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Fluorescence molecular tomography (FMT) allows the detection and quanti¯cation of various
biological processes in small animals in vivo, which expands the horizons of pre-clinical research
and drug development. E±cient three-dimensional (3D) reconstruction algorithm is the key to
accurate localization and quanti¯cation of °uorescent target in FMT. In this paper, 3D recon-
struction of FMT is regarded as a sparse signal recovery problem and the compressive sampling
matching pursuit (CoSaMP) algorithm is adopted to obtain greedy recovery of °uorescent sig-
nals. Moreover, to reduce the modeling error, the simpli¯ed spherical harmonics approximation to
the radiative transfer equation (RTE), more speci¯cally SP3, is utilized to describe light prop-
agation in biological tissues. The performance of the proposed reconstruction method is thor-
oughly evaluated by simulations on a 3D digital mouse model by comparing it with three
representative greedy methods including orthogonal matching pursuit (OMP), stagewise OMP
(StOMP), and regularized OMP (ROMP). The CoSaMP combined with SP3 shows an im-
provement in reconstruction accuracy and exhibits distinct advantages over the comparative
algorithms in multiple targets resolving. Stability analysis suggests that CoSaMP is robust to
noise and performs stably with reduction of measurements. The feasibility and reconstruction
accuracy of the proposed method are further validated by phantom experimental data.
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1. Introduction

Fluorescence molecular tomography (FMT) is a
sensitive and powerful whole body optical imaging
approach. With speci¯c °uorescence probe, FMT
allows noninvasive detection and survey of molec-
ular and cellular processes by accurately recon-
structing three-dimensional (3D) distribution of the
°uorescent targets. Thanks to extensive °uorescent
probe research and improved data acquisition,
FMT receives more and more attention in biomed-
ical research community and expands the horizons
of pre-clinical research and drug development.1–6

As an optical imaging modality, FMT has to
cope with the fact that biological tissue is a highly
scattering and absorbing medium. An accurate
forward model of light transport is essential to re-
construct 3D distribution of the inside targets from
the outside photon density detected on the surface.
The radiative transfer equation (RTE) has been
successfully used as a standard model for describing
light propagation in biological tissues.7 Until now,
providing solutions to RTE remains a challenging
task for anisotropic biological tissue with spatially
nonuniform scattering and absorption properties.
Di®usion approximation (DA) to the RTE is one of
the most widely used forward models in cases with
low absorption coe±cients or large geometries. Al-
though DA is computationally e±cient, it is less
accurate in small animal imaging where the source-
detector separation is small. Therefore, it is neces-
sary to adopt some high-order approximation-based
reconstruction methods to improve FMT recon-
struction. When small tissue geometries and high
light absorption are encountered, simpli¯ed spheri-
cal harmonics (SPN) method can accurately model
light propagation and overcome the limitations of
DA.8,9

The reconstruction of FMT is a severe ill-posed
inverse problem and small perturbation of the
charge-coupled-device (CCD) measurement will re-
sult in signi¯cant changes in reconstructed ima-
ges.10 In order to deal with the ill-posedness of FMT
and improve the reconstruction accuracy, regulari-
zation is essential in reconstruction procedure to
generate meaningful and stable numerical solu-
tions.11,12 By utilizing the fact that the °uorescence
targets in many FMT scenarios are sparse in the
sense that they typically occupy a small fraction
of the overall imaging domain, researchers have

proposed various compressed sensing (CS) inspired
reconstruction algorithms for FMT.

Following the framework of CS, two major
approaches to recover the unknown sparse targets
are ‘pð0 < p � 1Þ minimization and greedy meth-
ods. For example, Baritaux ¯rst propose a general
‘pð1 � p < 2Þ regularization method11 and validate
the adequacy of ‘1 regularization for FMT recon-
struction. And then several algorithms with ‘1
penalty function have been reported, including the
iterated shrinkage based algorithm,13 adaptive
support driven reweighted ‘1 regularization algo-
rithm,14 incomplete variables truncated conjugate
gradient method (IVTCG),15 and iteratively
reweighted regularization method.16 More recently,
nonconvex ‘pð0 < p < 1Þ regularizations are also
investigated in FMT. By converting ‘pð0 < p < 1Þ
minimization into a series of ‘1 problems, non-
convex ‘pð0 < p < 1Þ methods exhibit good per-
formance in accurately recovering sparse targets
and sparsity enhancement.17,18 Although the CS
theory demonstrates that the ‘1 approach provides
exact reconstruction in the noiseless case,19 greedy
methods have more advantages in computational
e±ciency, especially for large-scale applications.
Consequently, several greedy reconstructions
based on orthogonal matching pursuit (OMP),20

stagewise OMP (StOMP)21 and adaptive matching
pursuit (AMP)22 have been applied to FMT.
However, these greedy algorithms do not provide
global convergence guarantees.23 In Ref. 23, Nee-
dell and Tropp developed a stable greedy algo-
rithm, compressive sampling matching pursuit
(CoSaMP), which bridged the gap between ‘1
minimization and greedy methods.24,25 So far,
however, there has been little investigation about
CoSaMP in FMT.

The major concern of this paper is to present
e®ective and robust reconstruction method for
FMT. To improve the e±ciency and accuracy of
FMT reconstruction, SP3 model is used to describe
light propagation and the iterative CoSaMP algo-
rithm is used to recover the unknown °uorescence
signal. The proposed reconstruction method is
implemented in the framework of ¯nite element
method (FEM). Simulations on a 3D digital mouse
model and experimental evaluation on a physical
phantom were conducted to investigate the perfor-
mance of the CoSaMP algorithm combined with
SP3 model in FMT.
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2. Methods

2.1. SP3 model

For steady-state FMTwith point excitation sources,
the following coupled SP3 equations have been ex-
tensively used to depict the photon propagation9,26:

�r � 1

�a1

r’1 þ �a’1 �
2

3
�a’2 ¼ S

�r � 1

7�a3

r’2 þ
4

9
�a þ

5

9
�a2

� �
’2

� 2

3
�a’1 ¼ � 2

3
S;

8>>>>><
>>>>>:

ð1Þ

where ’1;2 is the composite of the Legendre moments
of radiance, �ai ¼ �a þ ð1� giÞ�s, with �a the ab-
sorption coe±cient, g the anisotropy parameter, and
�s the scattering coe±cient. S is the source term. To
solve the Eq. (1), the Robin-type boundary condi-
tions are widely used on the boundary27:

1

2
þA1

� �
’1 þ

1þB1

3�a1

ðnr’1Þ

¼ 1

8
þ C1

� �
’2 þ

D1

�a3

ðnr’2Þ;
7

24
þA2

� �
’2 þ

1þB2

7�a3

ðnr’2Þ

¼ 1

8
þ C2

� �
’1 þ

D2

�a1

ðnr’1Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

The coe±cients Ai;Bi;Ci and Di are the constant
coe±cients related to the refractive indices of the
biological tissue.28

In the FEM framework, the SP3 model can be
linearized and the following matrix-form equation
can be obtained:

M1’1
M1’2

M2’1
M2’2

� �
’1

’2

� �
¼

S

� 2

3
S

" #
: ð3Þ

For the excitation process, the excitation light
source ismodeled as isotropic-point sources located at
one-mean-free path of photon transport beneath
the surface. For the emission process S ¼ �X, � ¼
’1e � 2’2e

3 is the total °uence,where’1e and’2e canbe
directly obtained by solving Eq. (3) in the excitation
process, and X is the unknown nodal value of the
°uorescent yield to be reconstructed. So in the emis-
sion process, the following equation can be derived:

M1’1
M1’2

M2’1
M2’2

� �
’1

’2

� �
¼ ’1e

’2e

� � X

� 2

3
X

" #
: ð4Þ

The measured quantity is the exiting partial current
Jþ which can be calculated by27

Jþ ¼ 1

4
þ J0

� �
’1 �

0:5þ J1
3�a1

� �
n’1;

� 1

16
þ 2J0 � J2

3

� �
’2 �

J3
7�a3

� �
nr’2: ð5Þ

According to Eq. (2), n � r’i can be represented as a
linear combination of ’i. Consequently, the linear
relationship between the measurement J þ

m and the
unknown °uorescent yield distribution X is estab-
lished:

AX ¼ J þ
m: ð6Þ

2.2. FMT reconstruction with
CoSaMP

By exploiting the sparsity characteristic of °uores-
cent signals, one can formulate the inverse problem
of FMT into a ‘1 minimization problem and solve
it with linear programing algorithms. Unlike this
conventional method, the sparse target reconstruc-
tion in this paper is accomplished by using iterative
greedy algorithm. As an alternative approach to
sparse recovery, greedy algorithms ¯nd approxi-
mate solutions of

min jjXjj0 subject to jjAX � J þ
mjj22 � "2; ð7Þ

where jjXjj0 ¼ jfj : Xj 6¼ 0gj � N.
Inspired by the restricted isometry property,

CoSaMP computes the support of the signal X it-
eratively and reconstruct the signal using the
pseudoinverse.23 To identify the locations of the
largest components in the target k-sparse signal,
CoSaMP uses y ¼ A�J þ

m to serve as a proxy for the
signal because the energy in each set of k compo-
nents of the proxy approximates the energy in the
corresponding s components of X. Consequently,
the largest k entries of the proxy point toward the
largest k entries of the signal X. The algorithm
steps for CoSaMP appears as Algorithm 1.

Although it is computationally di±cult to check
the restricted isometry property of system matrix
in FMT, it is possible to recover the sparse
signal stably via CoSaMP. To implement recon-
struction with greedy algorithms, we need to nor-
malize the columns of system matrix A using an
operation ~A ¼ AW , where W is a diagonal matrix
with 1=jjai jj2 on the main diagonal. With the
input ~A, greedy algorithms produce an approximate

E®ective and robust approach for FMT based on CoSaMP and SP3 model

1650024-3

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
6.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



solution �X. Accordingly, we compute the solution of
Eq. (7) with X ¼ W �X.

As shown in Algorithm 1, the CoSaMP algorithm
requires the sparsity level k as part of its input.
Generally, sparse level k is empirically determined
by running CoSaMP several times with a range of
sparsity levels. In FEM based FMT, N denotes the
total number of mesh nodes in the entire region, and
k is the number of nodes involved in the target.
Consequently, the value of k roughly relates to the
target size. By comparing the approximation error
incurred by di®erent sparsity levels, we chose the
sparsity level k to 2, 4 or 8 in the following simu-
lations and experiments.

3. Experiments and Results

To validate our algorithm, we conducted simula-
tions on a 3D digital mouse model29 and experiment
in a cubic phantom. To evaluate the performance of
the iterative CoSaMP algorithm, we compared it to
several typical greedy algorithms, i.e., OMP,
StOMP, and ROMP. In numerical simulations,

single-target and double-target scenarios were con-
sidered, respectively. Moreover, the robustness and
stability of the proposed greedy method were in-
vestigated with simulations.

3.1. Comparison experiments

3.1.1. Experiments setup

The digital mouse was simulated based on the
Digimouse.29 The torso part with a height of 35mm
was chosen as the region to be investigated, includ-
ing heart, lungs, liver, stomach, kidneys, andmuscle,
as shown in Fig. 1(a). The optical parameters for
di®erent organs are listed in Table 1.15 Figure 1(b)
illustrates the distribution of 18 excitation sources
used in our simulations, which located at the plane
of z ¼ 16:5mm with 20� interval. The boundary
°uence rate was calculated by solving the SP3 model
with FEM. For every excitation source, we collected
the surface data on the opposite side with a 120�
¯eld of view (FOV). Hence, a total of 18 datasets
were assembled for the subsequent reconstruction.

Lungs

Heart

Kidneys

Liver

Muscle

Stomach

(a) (b)

Fig. 1. (a) Torso of the mouse atlas model (b) The plane of excitation sources at z ¼ 16:5mm. For each excitation source,
°uorescence is detected at the opposite side with a 120� FOV.

Algorithm 1:CoSaMP
Input: surface fluorescence J+

m, systerm matrix A, sparsity level k, iterations n

Output: Index set I ⊂ 1 , . . . , d, X̄

Initialization: Let the index set X̄ = 0 and the residual r = J+
m

Loop until halting criterion true:t > n

(1) Compute the proxy vector: y = A∗r
(2) Compute the best 2k support set of the error (index set): Ĩ = supp(y2k)
(3) Merge the strongest support sets: I = Ĩ ∪ supp(X̄)
(4) Perform a Least-Squares Signal Estimation: bI = A†

IJ
+
m, bIc = 0

(5) Prune X̄ and computer r for next round: X̄ = bk, r = J+
m − AX̄

X. He et al.
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3.1.2. Reconstruction of a single target

In this section, a cylindrical °uorescent target with
0.8mm radius and 1.6mm height was placed in the
liver with center at (11.9mm, 6.4mm, 16.4mm).
The °uorescent yield of the °uorescent target was
set to be 0.05mm�1. For the inverse problem, the
digital mouse was discretized into 12376 tetrahedral
elements and 2604 nodes.

It is well known that iterative methods obtain an
approximation close enough to the optimal solution
after an in¯nite number of iterations. By computing
the relative error jjA �X � J þ

mjj=jjJ þ
mjj caused by the

solution at iteration n, we can compare the con-
vergence speed of these greedy algorithms and de-
termine the optimal iteration number. As shown
in Fig. 2, CoSaMP converged faster than the other
comparative algorithms and yielded a smaller rela-
tive error in most cases.

Figure 3 shows the reconstruction results of four
greedy algorithms in single target case. Table 2
summarized the detailed quantitative results, in-
cluding the centers of the reconstructed target, lo-
cation error (LE) and the reconstructed °uorescent
yield. As shown in Table 2 and Fig. 3, although all
the tested algorithms produce a satis¯ed result in

single target case with LE of 0.4mm, CoSaMP
shows a great improvement in reconstructed °uo-
rescence yield and source distribution.

3.1.3. Reconstruction of double target

We also investigated the spatial resolution ability of
the proposed greedy algorithm with double-target
simulations. Obviously, compared to single-target
reconstruction, resolving two close targets is a more
challenging task to an inverse algorithm. In the
following simulation, two cylindrical targets with
uniform size were placed in the liver of the mouse
model with a center to center distance of 4.5mm.
The center coordinates of the two targets were
(11.9, 10.9, 16.4mm) and (11.9, 6.4, 16.4mm), re-
spectively. Since the radius of the target was
0.8mm, the actual edge separation between the two
targets was 2.9mm. To better test the performance
of the algorithms, we considered two scenarios, i.e.,
the °uorescence yields ratio between the two targets
were 1:1 and 2:1.

In the ¯rst case, the °uorescence yields of the
two targets were 0.05mm�1. Figure 4 and Table 3
show the reconstruction results by the four greedy
algorithms. From the reconstructed results, we ob-
served that the results by OMP and ROMP sig-
ni¯cantly deviate from the actual positions, where
LE of one target is up to 3.89mm and 4.5mm, re-
spectively. Both StOMP and CoSaMP can dis-
criminate two targets clearly, but the location
accuracy and reconstructed °uorescent yield by
CoSaMP are superior to that of StOMP. The LE
of Target 2 by CoSaMP is only 0.39mm, which
is smaller than 1.56mm by StOMP. Moreover, the
relative error in reconstructed °uorescent yield
by CoSaMP is within 14%, while that by StOMP is
about 38%.

In the second case, the °uorescence yields of the
two targets were 0.10mm�1 and 0.05mm�1, re-
spectively. Figure 5 illustrate the transverse view of
the reconstructions at z ¼ 16:4mm and Table 4
presents the quantitative results by the four algo-
rithms. The results of double-targets cases show
that OMP and ROMP are incompetent in multiple
targets reconstruction. StOMP and CoSaMP gen-
erally performed better than the other two algo-
rithms, but CoSaMP outperformed StOMP in the
terms of reconstructed °uorescence yields and lo-
cation accuracy. We observed that the °uorescence
yields ratio between the two reconstructed targetsFig. 2. Comparison of convergence.

Table 1. Optical parameters of the mouse organs.

Tissue �ax (mm�1) � 0
sx (mm�1) �am (mm�1) � 0

sm (mm�1)

Muscle 0.0052 1.08 0.0068 1.03
Heart 0.0083 1.01 0.0104 0.99
Lungs 0.0133 1.97 0.0203 1.95
Liver 0.0329 0.70 0.0176 0.65
Kidneys 0.0660 2.25 0.0380 2.02
Stomach 0.0114 1.74 0.0070 1.36

E®ective and robust approach for FMT based on CoSaMP and SP3 model
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produced by CoSaMP was 1.9:1. In contrast, the
ratio by StOMP was only 1.2:1.

3.2. Stability analysis

We evaluated the stability and robustness of the
CoSaMP algorithm by taking the in°uence of noise
and the number of excitation sources.

To investigate the in°uence of measurement
noise to the performance of CoSaMP, we separately
added 10% Gaussian noise and 10% Poisson noise to
the simulated measurements in single-target case.

Twenty independent reconstructions were con-
ducted for each kind of noise. The average recon-
struction result by CoSaMP is shown in Table 5.
We found that only the reconstructed °uorescent
yield was slightly a®ected by the noise and the lo-
cation accuracy kept invariable.

The dependence of the reconstruction results on
the number of excitation sources was also investi-
gated. The measurable data reduces with the de-
creasing of the number of excitation sources, and
the ill-posedness of FMT reconstruction will ac-
cordingly increase. In previous simulations, the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Comparison of the reconstruction results in single °uorescent target case. (a), (e) are the results of OMP; (b), (f) are the
results of StOMP; (c), (g) are the results of ROMP; (d), (h) are the results of CoSaMP. The ¯gures (a)–(d) are the transverse view of
the reconstruction at z ¼ 16:4mm, the black circle represents the real °uorescent target; (e)–(h) are the 3D views of the results with
node values greater than 70% of the maximum value.

Table 2. Reconstructed results of single °uorescent target.

Method Recon. position center (mm) LE (mm) Recon. °uo yield (mm�1)

OMP (11.8,6.3,16.0) 0.40 0.016
StOMP (11.8,6.3,16.0) 0.40 0.023
ROMP (11.8,6.3,16.0) 0.40 0.016
CoSaMP (11.8,6.3,16.0) 0.40 0.038

X. He et al.
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measurement is acquired every 20� and a total of
18 data sets were assembled for the reconstruc-
tion. In this subsection, we decrease the number of
excitation sources from 18 to 12, 6, 3 and the
measurement is obtained every 30�, 60�, 120�.
The detailed reconstruction results with reduced
measurements are presented in Table 6. The

results reconstructed from measurements with 12,
and 6 excitation nodes are satis¯ed. However,
when the excitation nodes reduce to 3, the
reconstructed target deviated from the actual
center. In addition, the reconstructed °uorescent
yield gradually declined with the decrease of ex-
citation sources.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Comparison of the reconstruction results in double °uorescent targets case. (a), (e) are the results of OMP; (b), (f) are
based on StOMP; (c), (g) are the results of ROMP and (d), (h) are based on CoSaMP. The ¯gures (a)–(d) are the transverse view of
the reconstruction at z ¼ 16:4mm, the black circle represents the real °uorescent target; (e)–(h) are the 3D views of the results with
node values greater than 70% of the maximum value.

Table 3. Reconstructed results of double targets with same °uorescence yields.

Method Fluo yield (mm�1) Recon. position center (mm) LE (mm) Recon. °uo yield (mm�1)

OMP 0.05 (12.5,9.7,17.2) 1.54 0.016
0.05 (10.4,3.9,19.8) 4.50 0.025

StOMP 0.05 (12.6,10.7,16.8) 0.79 0.031
0.05 (10.7,7.4,16.4) 1.56 0.034

ROMP 0.05 (15.4,11.7,17.7) 3.89 0.031
0.05 (11.3,6.7,16.3) 0.62 0.033

CoSaMP 0.05 (12.5,10.7,16.8) 0.79 0.048
0.05 (11.7,6.4,16.7) 0.35 0.043

E®ective and robust approach for FMT based on CoSaMP and SP3 model
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3.3. Physical experiments

The performance of CoSaMP algorithm combined
with SP3 model was further evaluated with phan-
tom experiment data. In this experiment a poly-
oxymethylene cubic phantom with a side length of

20mm was utilized and the experimental data was

acquired by a prototype FMT imaging system.15

The 4000 nM Cy5.5 solution with peak excitation

wavelength of 671 nm was injected into a small hole

(radius 1mm and height 2mm) drilled in the

Table 4. Reconstructed results of double targets with di®erent °uorescence yields.

Method Fluo yield (mm�1) Recon. position center (mm) LE (mm) Recon. °uo yield (mm�1)

OMP 0.10 (9.9,14.8,18.6) 5.01 0.003
0.05 (12.5,7.7,16.2) 1.55 0.014

StOMP 0.10 (11.8,9.7,16.8) 1.23 0.156
0.05 (11.7,6.8,16.8) 0.75 0.126

ROMP 0.10 (12.4,8.9,16.9) 2.02 0.048
0.05 (12.0,6.7,15.6) 0.81 0.028

CoSaMP 0.10 (12.0,10.3,16.8) 0.78 0.089
0.05 (12.3,6.4,16.7) 0.77 0.046

Table 5. Reconstruction results by CoSaMP with noisy measurements.

Noise type Recon. position center (mm) LE (mm) Recon. °uo yield (mm�1)

Gaussian (11.8,6.3,16.0) 0.40 0.028
Poisson (11.8,6.3,16.0) 0.40 0.026

Table 6. Reconstruction results by CoSaMP with di®erent numbers of excitation sources.

Excitation sources Recon. position center (mm) LE (mm) Recon. °uo yield (mm�1)

18 (11.8,6.3,16.0) 0.40 0.038
12 (12.4,6.6,16.5) 0.57 0.013
6 (12.6,6.6,16.4) 0.68 0.011
3 (13.0,6.8,16.6) 1.21 0.009

OMP StOMP ROMP CoSaMP

Fig. 5. Reconstruction results in the case of two targets with di®erent °uorescence yields. The true °uorescence yields of the two
targets are 0.10mm�1 and 0.05mm�1, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Reconstructed results of phantom data. (a)–(d) are the transverse views of the reconstruction by OMP, StOMP, ROMP
and CoSaMP on the plane of z ¼ 9:5mm. The black circle in transverse view represents the true target. (e)–(h) are the 3D isosurface
views of the results with top 80% of the maximum value, where the red cylinder represents the true position of Cy5.5 solution and
the blue zone is the reconstructed target.

(a) (b)

43

21

(c) (d)

Fig. 6. (a) The 3D view of the single °uorescent target in the cubic phantom. (b) The x–y view on the z ¼ 10mm plane, where the
white dots represent the excitation point source positions. (c) The surface data acquired by CCD at four di®erent views. (d) Inverse
mesh and photon distribution on the surface.
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phantom to serve as the °uorescent target. The
cubic phantom and the source setting is shown in
Figs. 6(a) and 6(b), where the center coordinates of
the target was (16, 8, 9.5mm). The optical para-
meters used for excitation wavelength (671 nm) and
emission wavelength (710 nm) were the same ones
in Ref. 15. The °uorescent target was excited by
point sources from four di®erent positions at the
plane of z ¼ 10mm. The surface data were acquired
with CCD camera from four views by rotating the
phantom with an angular increment of 90�, as
shown in Fig. 6(c). Figure 6(d) shows the corre-
sponding photon distribution on surface with 2D to
3D mapping.

For reconstruction, the cubic phantom was dis-
cretized into a 3D tetrahedral mesh with 14; 780
elements and 2989 nodes. Figure 7 shows the 3D
isosurface views of the reconstruction results with
top 30% of the maximum value. The reconstructed
Cy 5.5 solution by CoSaMP centered at (16.0, 7.4,
10.2mm), with a LE of 0.92mm and °uorescence
yield of 0.003mm�1 which is better than OMP with
1.42mm and 0.0011mm�1, StOMP with 1.44mm
and 0.0014mm�1, ROMP with 1.12mm and
0.0008mm�1.

4. Discussion and Conclusion

In this paper, FMT reconstruction was regarded as
a sparse recovery problem and solved it e±ciently
by an iterative greedy algorithm. Moreover, SP3

approximation to RTE was combined to improve
the modeling accuracy.

Two groups of comparison simulations were
designed to evaluate the reconstruction methods in
terms of localization accuracy and °uorescent yield.
From the compared results, we found that CoSaMP
and StOMP generally performed better than
OMP and ROMP in all of the testing cases. The
results of double-target cases clearly demonstrated
that OMP and ROMP were incompetent in multi-
ple targets reconstruction. Moreover, CoSaMP
outperformed StOMP in terms of reconstructed
°uorescence yields, location accuracy and multiple
target resolving.

To further evaluate the stability and robustness
of CoSaMP, the in°uence of measurement noise
and the number of excitation source were taken
into consideration. Simulation results showed that
measurement noise hardly a®ected location accu-
racy of CoSaMP. Only the reconstructed °uorescent

yield went down with the increase of noise. In
another hand, although measurement decrease
caused by reducing excitation nodes also a®ected
the reconstructed °uorescent yield, the reconstruc-
tion results were generally acceptable. For example,
the location accuracy slightly declined when the
excitation nodes reduced from 18 to 6.

The focus of this paper is to investigate the re-
construction ability of CoSaMP for FMT. For this
reason, some widely used strategies for improving
reconstruction are not incorporated in our imple-
mentation, which include permissible region and
multilevel FEM strategy, etc. The simulation and
phantom experimental results demonstrate that
CosaMP can e±ciently reconstruct the sparse tar-
get from incomplete and inaccurate measurements
even without these strategies. Our future work will
combine the advantages of greedy reconstruction
algorithm and these auxiliary strategies to further
improve the quantitative results.

Acknowledgments

This work is supported by the National Natural
Science Foundation of China (Nos. 61372046,
11571012 and 61401264), the Research Fund for the
Doctoral Program of Higher Education of China
(New Teachers) (No. 20116101120018), the Science
and Technology Plan Program in Shaanxi Province
of China (Nos. 2012 KJXX-29 and 2015 KW-002)
and the Natural Science Basic Research Plan in
Shaanxi Province of China (No. 2015JM6322).

References

1. A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de
Angelis, V. Ntziachristos, \Fmt-xct: in vivo animal
studies with hybrid °uorescence molecular tomog-
raphy-x-ray computed tomography," Nat. Methods
9(6), 615–620 (2012).

2. J. K. Willmann, N. Van Bruggen, L. M. Dinkelborg,
S. S. Gambhir, \Molecular imaging in drug devel-
opment," Nat. Rev. Drug Discov. 7(7), 591–607
(2008).

3. C. Darne, Y. Lu, E M. Sevick-Muraca, \Small ani-
mal °uorescence and bioluminescence tomography:
A review of approaches, algorithms and technology
update," Phys. Med. Biol. 59(1), R1–R64 (2014).

4. D. Wang, J. He, H. Qiao, X. Song, Y. Fan, D. Li,
\High-performance °uorescence molecular tomog-
raphy through shape-based reconstruction using

X. He et al.

1650024-10

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
6.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



spherical harmonics parameterization," PloS one
9(4), e94317 (2014).

5. N. Ducros, A. Bassi, G. Valentini, G. Canti, S.
Arridge, C. D'Andrea, \Fluorescence molecular to-
mography of an animal model using structured light
rotating view acquisition," J. Biomed. Opt. 18(2),
020503 (2013).

6. J. Ye, Y. Du, Y. An, C. Chi, J. Tian,
\Reconstruction of °uorescence molecular tomog-
raphy via a nonmonotone spectral projected gradi-
ent pursuit method," J. Biomed. Opt. 19(12),
126013 (2014).

7. V. Ntziachristos, J. Ripoll, L V. Wang, R. Weissle-
der, \Looking and listening to light: The evolution
of whole-body photonic imaging," Nat. Biotech.
23(3), 313–320 (2005).

8. A. D. Klose, E. W. Larsen, \Light transport in bi-
ological tissue based on the simpli¯ed spherical
harmonics equations," J. Comput. Phys. 220(1),
441–470 (2006).

9. H. Guo, Y. Hou, X. He, J. Yu, J. Cheng, X. Pu,
\Adaptive hp ¯nite element method for °uorescence
molecular tomography with simpli¯ed spherical
harmonics approximation," J. Innov. Opt. Health
Sci. 7(02) 1350057 (2014).

10. D. Wang, X. Song, J. Bai, \Adaptive-mesh-based
algorithm for °uorescence molecular tomography
using an analytical solution (Vol. 15, pg. 9722,
2007)," Opt. Express 15(15), 9722–9730 (2007).

11. J. C. Baritaux, K. Hassler, M. Unser, \An e±cient
numerical method for general regularization in
°uorescence molecular tomography," IEEE Trans.
Med. Imag. 29(4), 1075–1087 (2010).

12. Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, C.
Chi, J. Tian. \A novel region reconstruction method
for °uorescence molecular tomography," IEEE
Trans. Biomed. Eng. 62(7), 1818–1826 (2015).

13. D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang,
X. Yang, \A fast reconstruction algorithm for °uo-
rescence molecular tomography with sparsity reg-
ularization," Opt. Express 18(8), 8630–8646 (2010).

14. J. Shi, F. Liu, H. Pu, S. Zuo, J. Luo, J. Bai, \An
adaptive support driven reweighted l1-regulariza-
tion algorithm for °uorescence molecular
tomography," Biomed. Opt. Express 5(11), 4039–
4052 (2014).

15. H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou,
J. Tian, J. Liang, \Multilevel, hybrid regularization
method for reconstruction of °uorescent molecular
tomography," Appl. Opt. 51(7), 975–986 (2012).

16. W. Xie, Y. Deng, K. Wang, X. Yang, Q. Luo,
\Reweighted l1 regularization for restraining arti-
facts in FMT reconstruction images with limited
measurements," Opt. Lett. 39(14), 4148–4151
(2014).

17. D. Zhu, C. Li, \Nonconvex regularizations in °uo-
rescence molecular tomography for sparsity
enhancement,"Phys.Med. Biol. 59(12), 2901 (2014).

18. H. Guo, J. Yu, X. He, Y. Hou, F. Dong, S. Zhang,
\Improved sparse reconstruction for °uorescence
molecular tomography with l1/2 regularization,"
Biomed. Opt. Express 6, 1648–1664 (2015).

19. E. J. Candes, T. Tao, \Decoding by linear
programming," IEEE Trans. Inform. Theory
51(12), 4203–4215 (2005).

20. J. A. Tropp, A. C. Gilbert, \Signal recovery from
random measurements via orthogonal matching
pursuit," IEEE Trans. Inform. Theory 53(12),
4655–4666 (2007).

21. D. Han, X. Yang, K. Liu, C. Qin, B. Zhang, X. Ma,
J. Tian, \E±cient reconstruction method for l1
regularization in °uorescence molecular
tomography," Appl. Opt. 49(36), 6930–6937 (2010).

22. J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S.
Zhang, J. Tian, " Fast and robust reconstruction for
°uorescence molecular tomography via a sparsity
adaptive subspace pursuit method," Biomed. Opt.
Express 5(2), 387–406 (2014).

23. D. Needell, J. Tropp, \CoSaMP: Iterative signal re-
covery from incomplete and inaccurate samples,"
Appl. Comput. Harmon. Anal. 26(3), 301–321
(2008).

24. M. A. Davenport, D. Needell, M. B. Wakin, \Signal
space cosamp for sparse recovery with redundant
dictionaries," IEEE Trans. Inform. Theory 59(10),
6820–6829 (2013).

25. Y. Yongdou, Y. Jianqiao, W. Yuyong, L. Xia, C.
Tingting, \A improved cosamp algorithm based on
correlation coe±cient for compressed sensing image
reconstruction," J. Comput. Inform. Syst. 9(18),
7325–7331 (2013).

26. A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider,
C. Le, V. Ponomarev, R. Blasberg, \In vivo biolu-
minescence tomography with a blocking-o® ¯nite-
di®erence sp3 method and mri/ct coregistration,"
Med. Phys. 37(1), 329–338 (2010).

27. M. Chu, H. Dehghani, \Image reconstruction in
di®use optical tomography based on simpli¯ed
spherical harmonics approximation," Opt. Express
17(26), 24208–24223 (2009).

28. Y. Lu, A. Douraghy, H. B. Machado, D. Stout, J.
Tian, H. Herschman, A. F. Chatziioannou,
\Spectrally resolved bioluminescence tomography
with the third-order simpli¯ed spherical harmonics
approximation," Phys. Med. Biol. 54(21), 6477
(2009).

29. B. Dogdas, D. Stout, A. F. Chatziioannou, R. M.
Leahy, \Digimouse: A 3d whole body mouse atlas
from ct and cryosection data," Phys. Med. Biol.
52(3), 577 (2007).

E®ective and robust approach for FMT based on CoSaMP and SP3 model

1650024-11

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
6.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	Effective and robust approach for fluorescence molecular tomography based on CoSaMP and SP3 model
	1. Introduction
	2. Methods
	2.1. SP3 model
	2.2. FMT reconstruction with CoSaMP

	3. Experiments and Results
	3.1. Comparison experiments
	3.1.1. Experiments setup
	3.1.2. Reconstruction of a single target
	3.1.3. Reconstruction of double target

	3.2. Stability analysis
	3.3. Physical experiments

	4. Discussion and Conclusion
	Acknowledgments
	References


